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The Data Problem

How do we extract meaning from Complex Data?

I Data is complex because it’s ”Big Data”

I Or has very rich features (eg. Genetic Data >500,000 features, complicated
interdependencies)

I Or both!

Problem 1: There isn’t a single story happening in your data.
Problem 2: Too many hypothesis to check.

TDA will be the tool that summarizes out the irrelevant stories to get at something
interesting.

The shape (segmentations, groupings) represent verified hypothesis. You have to
decide if they are interesting.
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Math World

We start in ”Math World”

I We’ll draw the data as a smooth manifold.

I Functions that appear are smooth or continuous.

⇒ We will not need either of these assumptions once we’re in ”Data World”.

⇒ Even more importantly, data in the real world is never like this.



Math World

We start in ”Math World”

I We’ll draw the data as a smooth manifold.

I Functions that appear are smooth or continuous.

⇒ We will not need either of these assumptions once we’re in ”Data World”.

⇒ Even more importantly, data in the real world is never like this.



Math World

We start in ”Math World”

I We’ll draw the data as a smooth manifold.

I Functions that appear are smooth or continuous.

⇒ We will not need either of these assumptions once we’re in ”Data World”.

⇒ Even more importantly, data in the real world is never like this.



Math World

We start in ”Math World”

I We’ll draw the data as a smooth manifold.

I Functions that appear are smooth or continuous.

⇒ We will not need either of these assumptions once we’re in ”Data World”.

⇒ Even more importantly, data in the real world is never like this.



Math World

We start in ”Math World”

I We’ll draw the data as a smooth manifold.

I Functions that appear are smooth or continuous.

⇒ We will not need either of these assumptions once we’re in ”Data World”.

⇒ Even more importantly, data in the real world is never like this.



Math World

Data



Math World

f

p

Data



Math World

f

pf−1(p)

Data



Math World

f

pf−1(p)

=⇒

Data



Math World

f

pf−1(p)

=⇒

q

Data



Math World

f

pf−1(p)

=⇒

q

Data



Math World

f

pf−1(p)

=⇒

q

Data



Math World

f

pf−1(p)

=⇒

q

g

Data



Math World

f

pf−1(p)

=⇒

q

g

Data

p′



Math World

f

pf−1(p)

=⇒

q

g

Data

p′



Math World

f

pf−1(p)

=⇒

q

g

Data

p′ q′



Math World

f

pf−1(p)

=⇒

q

g

Data

p′ q′



Math World

f

pf−1(p)

=⇒

q

g

Data

r′



Math World

f

pf−1(p)

=⇒

q

g

Data

r′



Math World

f

pf−1(p)

=⇒

q

g

Data



Why is this useful?

⇒ We get ”easy” understanding of the localizations of quantities of interest.



Why is this useful?

⇒ We get ”easy” understanding of the localizations of quantities of interest.



Why is this useful?

f

g



Why is this useful?

f

g



Why is this useful?

f

g



Why is this useful?

f

g



Why is this useful?

f

g



Why is this useful?

f

g



Why is this useful?

f

g



Why is this useful?

f

g



Why is this useful?

f

g



Why is this useful?

I Lenses inform us where in the space to look for phenomena.

I For easy localizations many different lenses will be informative.

I For hard ( = geometrically distributed) localizations we have to be more careful.

But even then, we frequently get incremental knowledge even from a poorly
chosen lens.
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inverse image”.

I We connect clusters (nodes) with an edge if they share points in common.
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I Standard data analysis functions

I Geometry and Topology

I Modern Statistics

I Domain Knowledge / Data Modeling

A Non Exhaustive Table of Lenses
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Mean/Max/Min Centrality PCA/SVD Age
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... Error/Debugging Info
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Real Examples



Supervised Learning: Model Introspection

We can use TDA to examine what is happening with our machine learning models.



Model Introspection: Outliers

Data: Customer attributes. Service usages, contractual details.

Problem: Customers commit fraud. Find customers with abnormal costs.

Proposed Solution: Create an ensemble of cost outlier models. Use these to flag
customers as being fraudulent.
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I Color by who is being flagged by the ensemble as being a (high) cost outlier.
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Model Introspection: Outliers

Observation:

I The different (independent?) models are all flagging the same group of customers
as cost outliers.

Remember that we didn’t use cost in the network creation

I The client was completely unaware that they we flagging a consistent group of
customers. Assumed it was distributed throughout the space.

Further Investigation:

I Have we found a model free outlier model? No cost information needed?

I More likely: Our models have a systematic bias.

⇒ TDA tells use where to look in our data for problems and questions.
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Part II



1. Review

2. Why Topolgy? (With Examples)

3. More Applications
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TDA is a machine for creating geometric/topological summaries.

The shape (segmentations, groupings, features) represent verified hypothesis. You
have to decide if they are interesting.
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1. Coordinate Invariance
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3. Compressed Representation
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Coordinate Invariance

I The topology of shape doesn’t depend on the coordinates used to describe the
shape.

I Many different feature sets can describe the same phenomena

I While processing data we frequently alter the coordinates: scaling, rotation,
whitening

⇒ You want to study properties of your data that are invariant under coordinate
changes.
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I Different underlying technology
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Coordinate Invariance: Gene Expression 

NKI!

GSE230!

ESR1 Levels!



2) Deformation Invariance
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I Topological features don’t change when you stretch and distort the data

Advantage: Makes problems easier.

I Noise resistance.

I Less preprocessing of the data.

I Robust (stable) answers.
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Deformation Invariance: Circle and Noisy Line

Some lessons.

I We can be surprised even when we think the solution is obvious. Both examples
had almost perfect correlation.

I We did not think to transform the data to look for structure. TDA saved us.

I Being insensitive to deformation means we discover unexpected structure.

I We did not find structure in noise.
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Some lessons.

I Separating the two classes was easy. Take connected components of graph.

I We retained more information than clustering.

We remember that we have lines.

I If there was localized structure along the spiral, for example, subclasses of the two
major classes, we would find those localizatons on these lines.
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Compressed Representation

I Replace the metric space with a combinatorial summary: a simplicial complex.

I The data is easier to manage, search and query while maintaining essential
features.

I Leverage many known algorithms from Graph Theory , Computational
Topology and Computational Geometry

This is more or less what TDA is about
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Analogy: Cartography

To be a good and useful map:

I Come at your problem with as few assumptions as possible but bring tools to
measure what’s there (metrics & lenses)

I Measure what you find. Use as few assumptions as possible.
I Produce a summary relevant to the problem.

I Different problems require different summaries.

Use your map to make decisions! Don’t got back and measure from scratch.

⇒TDA is the machine that takes the tools (metrics & lenses) and produces the
summary (network)
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More Examples



Customer Churn

Data: Customer usage and contractual details for major telco.

Analysis: A contractual stage data lens was used to split the data into ”contractual
stage” groups
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Customer Churn

Shape and Meaning

I We see similar shape across all the contract stages.

I We can see natural segmentations the vary over many orders of magnitude
(100-50,000 customers) in size.

I Stability gives us confidence in the validity of the results.

I The shape tells us where to look in the data. We were able to localize churn in
certain contract stages.

I Coloring helps us figure out what is going on.

I Not shown: The software also allows for statistical queries of subgroups of data
points.

⇒ We turn our insight into better targeting resulting in fewer lost customers. This can
be automated.
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Predictive Maintenance: Industrial Machinery

Setup: We have a large piece of industrial machinery, think turbine, jet engine,
locomotive or robot. Built into the machine are sensors measuring physical quantities:
pressure, temperature, rpms etc.

Problem: Unscheduled downtime is very expensive.

Question: Can we predict when a part will need to be repaired in the future so we can
schedule the downtime appropriately?



Predictive Maintenance: Industrial Machinery

Data Transformation: We want the sensors to be comparable. In this example,
z-scoring is sensible

(but there are other sensible choices as well, min/max
normalization, logs if sensors vary of several orders of magnitude).
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High mean, high variance 

High mean, low variance 
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Parkinson’s Detection with Mobile Phone





Analyzing NGS Data with Ayasdi Cure 

About the Data 
•  164 patients from autism 

clinical trial 
•  Some with autism, some 

without 
•  Data consists of genotype calls 

Goal: Identify genetic drivers of the disease in subpopulations 



Analyzing NGS Data with Ayasdi Cure 

Disease Phenotype 
for Autism 

Patients in the trial 
with Autism 

High Low 



Analyzing NGS Data with Ayasdi Cure 





This is an nnotation 

Isomap: Configuration Space of C8H16 



Malware System Calls 



Malware System Calls 



Drag and Drop Interface 

Patient Query Detail 

Care Path Overview 
Patient Query 

User Experience for Care Paths 



What’s the point of all this?



Data Has Shape

And Shape Has Meaning
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