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Abstract 
 
The goal of Manifold Learning (ML) is to find 
a description of low-dimensional structure of 
an unknown q-dimensional manifold 
embedded in high-dimensional ambient 
Euclidean space R

p
, q < p, from their finite 

samples. There are a variety of formulations of 
the problem. The methods of Manifold 
Approximation (MA) reconstruct (estimate) the 
manifold but don’t find a low-dimensional 
parameterization on the manifold. The most of 
Manifold Embedding (ME) methods find a 
low-dimensional parameterization but don’t 
reconstruct the manifold from a sample. In the 
paper, the ML is considered as Tangent Bundle 
Manifold Learning (TBML) problem in which 
the manifold, its tangent spaces and low-
dimensional representation accurately 
reconstructed from a sample. A new 
geometrically motivated method for the TBML 
solution is presented, it also gives a new 
solution for the MA and ME. 

 
1. Introduction 

In general, the goal of Manifold Learning (ML) is to 
find a description of low-dimensional structure of an 
unknown q-dimensional manifold X embedded in 
high-dimensional ambient Euclidean space R

p
, q < p, 

from their random samples Xn = {X1, X2, … , Xn} 
(Freedman, 2002). It is usually assumed that X, which 
is further referred to as the Data Manifold (DM), is a 
‘well-behaved’ smooth manifold with positive-radius 
tube (thus, no self-intersections, no ‘short-circuit’), and 
the DM X is ‘well-sampled’; this means that the sample 
size n is sufficiently large. In most studies, the DM is 
modelled using single coordinate chart. The ML is 
closely related with Topological Data Analysis 
problems consisting in finding of the topological 
structure in data (Carlsson, 2009; Edelsbrunner and 
Harer, 2010; Balakrishnan et al., 2014). 

The term ‘to find a description’ is not formalized in 
general, and it has different meaning in different ML-
articles. In the articles related to computational 
geometry this term means ‘to approximate (to 
reconstruct, to estimate) the manifold’. The 
corresponding Manifold Approximation (MA) problem 
is as follows: Given a finite dataset Xn randomly 
sampled from the DM X, to construct (to learn) some set 
X* in R

p
 that approximates X in a suitable sense 

(Freedman, 2002; Levin, 2003; Kolluri et al., 2004; 

etc.). The MA-methods are usually based on a 
decomposition of the DM X on small regions (using, for 
example, Voronoi decomposition or Delaunay 
triangulation on X), and each region is piecewise 
approximated by some geometrical structure, such as 
simplicial complex (Freedman, 2002), tangential 
Delaunay complex (Boissonnat and Ghosh, 2014), 
finitely many affine subspaces called ‘flats’ (Karygianni 
and Frossard, 2012), k-means and k-flats (Canas et al., 
2012), etc. In many works, the manifold is locally 
(piecewise) approximated by its tangent bundle.  

However, the MA-methods have a common drawback: 
they do not find a low-dimensional parameterization on 
the Data manifold; such parameterization is usually 
required in the Machine Learning/Data Mining tasks 
which deal with high-dimensional data. 

Data Analysis tasks arising in Machine Learning/Data 
Mining, such as Pattern Recognition, Classification, 
Clustering, and other, lead to other formulations of the 
ML. The Data Analysis algorithms deal with real-world 
data that are presented in high-dimensional spaces, and 
the ‘curse of dimensionality’ phenomena is often an 
obstacle to the use of many methods for solving these 
tasks. To avoid these phenomena, various 
Representation learning algorithms are used as a first 
key step in solutions of these tasks (Bengio et al., 
2012). Representation learning (Feature extraction) 
algorithms transform the original high-dimensional data 
into their lower-dimensional representations (or 
features) so that as much information about the original 
data required for the considered task is preserved as 
possible. Representation learning problems that consist 
in extracting a low-dimensional structure from high-
dimensional data can be formulated as various 
Dimensionality Reduction (DR) problems.  

As a rule, high-dimensional real-world data lie on or 
near some unknown low-dimensional DM embedded in 
an ambient high-dimensional ‘observation’ space; in 
other words, it is satisfied Manifold assumption (Seung 
and Lee, 2000). The DR under the Manifold assumption 
are usually referred to as the ML (Cayton, 2005; 
Narayanan and Mitter, 2010; Ma and Fu, 2011; Rifai et 
al., 2011; Izenman, 2012; etc.).  

The ML problem in Data Analysis is usually formulated 
as Manifold Embedding (ME) problem, which is as 
follows: Given dataset Xn sampled from the DM X, 
construct a low-dimensional parameterization of the 
DM X which produces an Embedding mapping from the 
DM X to an Feature Space (FS) Y = h(X)  R

q
, 

preserving specific geometrical and topological 
properties of the DM like local data geometry, 
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proximity relations, geodesic distances, angles, etc. 
Thus, sample features hn = h(Xn) = {h1, h2, … , hn} must 
‘faithfully represent’ the sample Xn. Note that mapping 
h must also be defined not only on the sample Xn but 
also on new Out-of-Sample (OoS) points X  X / Xn.  

ME-methods are proposed in many papers, see the 
surveys (Cayton, 2005; Huo et al., 2007; Ma & Fu, 
2011; etc.). The ME methods are also used successfully 
for solution of the various topological problems, see, for 
example, (Niyogi et al., 2008; 2011). 

ME is usually a first step in various Data Analysis tasks, 
in which reduced q-dimensional features y = h(X) are 
used in the reduced learning procedures instead of initial 
p-dimensional vectors X. If the Embedding mapping h 
in the ME preserves only specific properties of high-
dimensional data, then substantial data losses are 
possible when using a reduced vector y = h(X) instead 
of the initial vector X. To prevent these losses, the 
mapping h must preserve as much available information 
contained in the high-dimensional data as possible (Lee 
and Verleysen, 2008; 2009). Thus, it is necessary to find 
a Reconstruction mapping g from the FS Y = h(X) to 
the ambient space R

P
 with small reconstruction error 

(X) = X - g(h(X)).  

This possibility is directly required in various Data 
Analysis tasks such as multidimensional time series 
prognosis (Chen et al, 2008), data-based approximation 
of function with high-dimensional inputs, etc. 
(Bernstein et al., 2011; etc.). 

However, the most of popular ME-methods have 
common drawback: they do not allow reconstructing 
high-dimensional points X from their low-dimensional 
features h(X). Thus, it is necessary to formulate ML 
problem in such a way that its solution does not have 
the above drawbacks. In other words, corresponding ML 
procedure must not only find the low-dimensional 
parameterization of the DM but also reconstruct the 
high-dimensional manifold points from their low-
dimensional features. 

In this paper, by the ML we mean a constructing two 
interrelated mappings h and g from the sample which 
ensure small reconstruction errors (X) (Bernstein 
and Kuleshov, 2012; 2013).  

The rest of the paper is organized as follows. Section 
2 contains a strict definition of the ML in the above 
statement, which can be formulated as a Manifold 
Reconstruction problem. Based on some desired 
properties of the ML solution, in Section 3 we 
introduce an amplification of the ML, called Tangent 
Bundle ML problem (TBML), which requires an 
estimating of tangent spaces to the DM also. The 
proposed TBML solution is presented in Section 4; 
some properties of this solution are described shortly in 
this section. 
 
2. Manifold Reconstruction problem 

We will consider the following ML definition: Given a 
dataset Xn randomly sampled from the DM X, construct 
an ML-solution  = (h, g) consisting of two interrelated 
mappings: an Embedding mapping 

h: Хh  R
p
  R

q
,  (1) 

defined on a domain of definition Хh  X, and a 
Reconstruction mapping 

g: Yg  R
q
  R

p
,  (2) 

defined on a domain of definition Yg  Yh = h(Хh), 
which ensure the approximate equality 

r(X)  X   for all   Х  Х, (3) 

where r(X)   g(h(X)) is the result of successively 
applying of Embedding and Reconstruction 
mappings to a vector Х  Х.  

Note that the ML-solution includes a determination of 
the domains of definition Хh and Yg also. The 
Reconstruction error (X) = r(X) - X is a measure of 
quality of the ML solution  at point Х  Х.  

The solution  determines a q-dimensional 
Reconstructed Manifold (RM)  

Х = {X = g(y)  R
p
: y  Y  R

q
} (4) 

embedded in R
p
 and covered (parameterized) by the 

single chart g defined on the FS Y = h(X). Thus, the 
approximate equalities (4) can be written in the form 

X  Х  r(X)   (5) 

and considered as Manifold proximity property.  

The above defined ML, in which the ML-solution  
accurately reconstructs the unknown DM X by the RM 
X and determines the low-dimensional parameterization 
y = h(X) on the DM X, can be referred to as the 
Manifold Reconstruction (MR). Note that ME-solution h 
reconstructs a parameterization on the DM X only. 

There are some (though limited number of) methods for 
reconstruction of the DM X from the FS h(X). For a 
specific linear DM, the reconstruction can be easily 
made with the Principal Component Analysis (PCA) 
(Jollie, 2002). For nonlinear DM, the sample-based 
Auto-Encoder Neural Networks (Kramer, 1991; Hinton 
and Salakhutdinov, 2006; etc.) determine both the 
embedding and reconstruction mappings. General 
method, which reconstructs the DM in the same manner 
as Locally Linear Embedding (Saul and Roweis, 2000), 
has been introduced in (Saul and Roweis, 2003). An 
interpolation-like nonparametric regression 
reconstruction of the DM is proposed in another 
embedding method called Local Tangent Space 
Alignment (Zhang and Zha, 2005). 

Above defined MR may be also considered as a 
Manifold Estimation Problem which is as follows: 
Given a dataset Xn randomly sampled from an unknown 
smooth q-dimensional DM X in R

p
 covered by a single 

chart, estimate the DM. It is natural to evaluate a quality 
of the estimator Х (4) (sample-based q-dimensional 
manifold in R

p
 also covered by a single chart) by the 

Hausdorff distance H(Х, X) between the DM and RM 
(Genovese et al., 2012); the following relation  

H(Х, X)  supХ  Х(X).  (6) 

between the qualities of MR and Estimation problems 
takes a place. 

The Reconstruction error (X) can be directly 
computed at the sample points Х  Хn; for OoS point X 
it describes the generalization ability of the considered 
MR-solution  at a specific point X. The local lower and 



upper bounds are obtained for the maximum 
reconstruction error in a small neighborhood of an 
arbitrary point X  Х (Bernstein and Kuleshov, 2013); 
these bounds are defined in terms of the distance 
between the tangent spaces L(X) and L(r(X)) to the 
DM Х and the RM Х at the points X and r(X), 
respectively. It follows from the bounds that the greater 
the distances between these tangent spaces, the lower 
the local generalization ability of the solution .  

Thus, it is natural to require that the MR-solution 
ensures not only Manifold proximity (3) but also 
Tangent proximity  

L(X)  L(r(X))   for all Х  Х (7) 

between these tangent spaces in some selected metric 
on the Grassmann manifold Grass(p, q) consisting of all 
the q-dimensional linear subspaces in R

p
 (the tangent 

spaces are treated as elements of the Grass(p, q)). The 
requirement of the Tangent proximity for the MR-
solution arises also in various applications in which 
the MR is an intermediate step for Intelligent Data 
Analysis problem solution. 

A statement of the extended ML problem, which 
includes an additional requirement of the tangent spaces 
proximity, has been proposed in (Bernstein and 
Kuleshov, 2012) and is described in next section. 
 
3. Extended Manifold Reconstruction problem 

Before introducing the extended ML, note that the set 
T(X) = {(X, L(X)): Х  Х} composed of points X of 
the manifold X equipped by the tangent spaces L(X) at 
these points, is known in Topology as tangent bundle of 
the manifold X. So, proximity between the manifolds 
and their tangent spaces can be called Tangent bundle 
proximity, and the amplification of the MR consisting in 
accurate reconstruction of the tangent bundle Т(Х) from 
the sample Xn may be referred to as the Tangent Bundle 
Manifold Learning (TBML). 

A strict definition of the TBML is as follows: Given 
dataset Xn randomly sampled from a q-dimensional DM 
X embedded in an ambient p-dimensional space R

p
 and 

covered by a single chart, construct a TBML-solution 
 = (h, g) (1), (2) which provides both the above defined 
Manifold proximity (3), (5) and the Tangent proximity 
(7) where the tangent space L(r(X)) = Span(Jg(h(X))) 
is spanned by columns of the Jacobian matrix Jg(y) of 
the mapping g at the point y = h(X). 

The TBML-solution  determines the Reconstructed 
tangent bundle 

RТ(X) = {(g(y), Span(Jg(y))): y  Y} (8) 

of the RM X, which is close to the T(X), and the q-
dimensional submanifold L = {Span(Jg(y)): y  Y} of 
the Grassmann manifold which reconstructs the 
Tangent Manifold L = {L(X): X  X}. 

 
4 .  Reconstruction of tangent bundle of the Data 
Manifold 

Describe TBML-solution called Grassman&Stiefel 
Eigenmaps (GSE); its early version has been proposed 
in (Bernstein and Kuleshov, 2012). 

The GSE consists of two successively performed main 
parts: Part I (approximation of the Tangent manifold) 
and Part II (reconstruction of the DM).  

In Part I, the sample-based family H = {H(X), X  X} 
consisting of pq matrices H(X) smoothly depending on 
X  X is constructed to meet the relations 

LH(X)  L(X)    for all Х  Х (9) 

here LH(X) = Span(H(X)) are q-dimensional linear 
spaces in R

p
 spanned by columns H

(1)
(X), H

(2)
(X), ... , 

H
(q)

(X) of the matrices H(X).  

The mappings h and g will be built in the Part II in such 
a way as to provide the proximities g(h(X))  X and 

Jg(h(X))  H(Х); (10) 

thence, the linear space LH(X) must be the tangent space 
to the RM Х, whence comes the Tangent Bundle 
proximity (5), (7). For possibility of constructing such 
mappings, the family H must satisfy the additional 
property: the tangent vector fields H

(1)
(X), H

(2)
(X), ... , 

H
(q)

(X)  L(r(X)) are potential vector fields; thence, 
they must meet the following relations: 

(X)(X) (i)(j)
)j()i( HH

HH
 , 1  i < j  q, (11) 

here H denotes a covariant differentiation with respect 
to the vector field H(X)  L(r(X)). 

In Part II, given LH, the Embedding mapping h(X) is 
constructed as is follows. Taylor series expansions 

g(y) – g(y)  Jg(y)  (y – y)  (12) 

at near points y and y, under the desired equalities (3) 
and (10) for mappings h and g specified further, imply 
the equalities: 

Х – Х  H(X)  (h(X) – h(X))  (13) 

for near points X, Х  X. Under the already 
constructed family H, these approximate equalities are 
used for constructing the embedding mapping h; that, in 
turn, determines the Feature space Y = h(X). 

To construct he mapping satisfying the proximities (3) 
and (10), the pq matrix G(y) dependent on y  Y  is 
constructed to meet the condition 

G(h(X))  H(X).  (14) 

Then, under the already constructed family H, mapping 
h and matrix G(y), the equations (12) can be written as 

g(y)  X + G(y)  (y – h(X)).  (15) 

for near points y, h(X)  Y, which are used for 
constructing the mapping g.  

Describe briefly the details of the GSE. Preliminarily, 
the tangent space L(X) for the points X  Xh are 
estimated by the q-dimensional linear space LPCA(Х) 
which is a result of the PCA applied to sample points 
from an n-ball in R

p
 centered at X; the set Xh  R

p
 

consists of the points X in which the q
th

 eigenvalue in 
PCA is positive. 

The data-based kernel K(X, X), X, X  Xh, is 
constructed as a product KE(X, X)  KG(Х, Х), where 
KE is standard Euclidean ‘heat’ kernel (Belkin and 
Niyogi, 2002) and KG(Х, Х) = KBC(LPCA(Х), LPCA(Х)) 
is the Binet-Cauchy kernel (Wolf and Shashua, 2003) on 



the Grass(p, q); this aggregate kernel reflects not only 
geometrical nearness between the points Х and X but 
also nearness between the linear spaces LPCA(Х) and 
LPCA(X), whence comes a nearness between the tangent 
spaces L(Х) and L(X). 

Approximation of the Tangent manifold. The set Hn 
consisting of pq matrices Hi that meet the constraints 
Span(Hi) = LPCA(Xi) and satisfy the linear equations are 
written explicitly, is constructed to minimize the 
quadratic form 

H,n(Hn) = 
 

 
                  

  
     , (16) 

under the normalizing condition 

          
        

 
     

required to avoid a degenerate solution, and q(q-1)/2 
additional linear conditions, which are obtained from 
equations (11) by replacing the derivatives in (11) by 
finite differences, here  

K(X) =          
 
    and K =        

 
     

The pq matrix H(X) for an arbitrary point X  Хh is 
chosen to minimizes the form 

H(H, X) =     
n

1j

2

F
jj H - ХHХ Х,K    

under the specified linear conditions. 

The exact solution of the minimizing problem (16) is 
obtained as solution of specified generalized 
eigenvector problems. The matrix H(X) which 
minimizes the quadratic form H(H, X) is written in 
explicit form. 

The cost function (16) is similar to the cost function in 
the Laplacian Eigenmaps, LE (Belkin and Niyogi, 2002; 
2003), but different kernels are used in (16) and LE, and 
minimization in (16) is over matrices, while 
minimization in LE is over vectors. The cost function 
(16) was used in (Goldberg and Ritov, 2009) for 
aligning the PCA projectors to define a novel measure 
for a quality of arbitrary Sample embedding. 

The problem of estimating the tangent spaces L(X) in 
the form of a smooth function of the point X  X was 
considered in some previous works. The matrices whose 
columns approximately span the tangent spaces were 
constructed using Artificial Neural Networks with one 
hidden layer (Bengio and Monperrus, 2005) or Radial 
Basis Functions (Dollár et al., 2006; 2007). Other 
Persistent Tangent Space Learning method is proposed 
in (He and Lin, 2011) for constructing the 
approximations for the tangent spaces, which smoothly 
varied on the manifold. The constructed linear spaces 
{LH(Xi)} is the result of an alignment of the PCA-based 
linear spaces {LPCA(Xi)}; similar alignment problem 
was studied in (Zhang and Zha, 2005) with using a cost 
function, which differs from our cost function (16). 

Reconstruction of the DM: the Embedding mapping.  

First, consider the equations (13) written for near 
sample points, as regression equations, and compute 
a preliminary vector set hn = {h1, h2, … , hn} as a 
standard least squares solution of the regression 
problem, which minimizes the weighted residual 

                               
  

        

under normalizing condition h1 + h2 + … + hn = 0.  

Then, based on hn, choose a value h(X) for an 
arbitrary point X  Хh by minimizing over h(X) the 
weighted residual 

                              
  

    .  

Thus, under hn, the value h(X) for arbitrary point 
X  Хh (including sample points) is written as  

h(X) = hKNR(X)+            
 (X) (X), (17) 

here v(X) =     
 (X)  H(Х), 

(X) = 
 

    
                

 
   , (18) 

and 

hKNR(Х) = 
 

    
            

 
    (19) 

is standard Kernel Non-parametric Regression estimator 
(Wasserman, 2007) for h(X) based on the preliminary 
values hj  hn of the vector h(X) at the sample points.  
Note that the embedding h(X) gives a new solution 
for the Manifold Embedding problem. 

Reconstruction of the DM: the Reconstruction 
mapping. 

The data-based kernel k(y, y) on constructed Feature 
space Y and linear spaces L*(y)  Grass(p, q) 
dependent on y  Y are constructed to provide the 
equalities  

k(h(Х), h(X))  K(Х, X)   

and  

L*(h(Х))  LPCA(Х)    

for the points X  Хh and X  Хn. Denote *(y) the 
projector onto the linear space L*(y), and Yn the let 
dataset consisting of the the features {yi = h(Xi)}.  

First, we construct the pq matrix G(y) to meet the 
condition (14). For this we choose the value G(y) for 
arbitrary point y  Y by minimizing the form 

        
 

 
                   

  
     

under the constraint Span(G(y)) = L*(y). A solution of 
this problem in explicit form is as follows: 

G(y) = *(y) 
 

    
              

 
   ,  

here k(y) =  
n

1j j)y k(y, . 

To provide the desired equalities (3) and (10), the 
function g(y) is chosen to minimize the quadratic form 

                           
 

  
     

under the condition Jg(y) = G(y). 

A solution of this problem in explicit form is as follows: 

g(y) = gKNR(y)+G(y)(y - 
 

    
           

 
   ),     (20) 

here 

gKNR(y) = 
 

    
            

 
   , (21) 

is standard Kernel Non-parametric Regression estimator 
for g(y) based on the values Xj  Xn of the vector g(y) 
at the sample features yj  Yn. Note, that the relation 
G(y) = Jg(y) is follows from (20). 
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The constructed mappings h(X) (17) – (19) and g(y) 
(20), (21) give a new solution for the MR and ensure the 
Tangent bundle proximity. Furthermore, under 
asymptotic n   and appropriate choice of ball radius 
n ~ O(n

-1/(q+2)
), the rate in Tangent Bundle proximity is 

(Kuleshov et al., 2013) is 

X – r(X) = O(n
-2/(q+2)

),  (22) 

dP,2(L(X), L(r(X))) = O(n
-1/(q+2)

);  (23) 

it means that the events (22), (23) hold true with high 
probability, i.e., the probability of these events exceeds 
the value (1 – C / n


) for any n and  > 0, where 

constant C depends only on ; here dP,2 is the 
projection 2-norm metric on the Grassmann manifold 
Grass(p, q) (Wang, 2006). 

The rate in (22) coincides with the asymptotically 
minimax lower bound for Hausdorff distance between 
the DM and RM, which was set out in (Genovese et al., 
2012). It follows from (22) and (6) that the RM Х 
estimates the DM Х with optimal rate of convergence.  

The rate (23) for a deviation of the estimator LPCA(X) 
from the tangent space L(X) at the reference point X is 
known (Singer and Wu, 2012; Tyagi et al., 2013). 
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